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Largest Lyapunov exponent in molecular systems. II: Quaternion coordinates and application
to methane clusters

F. Calvo*
Laboratoire Collisions, Agre´gats, Re´activité, CNRS UMR 5589, Institut de Recherche sur les Syste`mes Atomiques et Mole´culaires

Complexes, Universite´ Paul Sabatier, 118 Route de Narbonne, F31062 Toulouse Cedex, France
~Received 15 January 1999!

We present a numerical procedure for extracting Lyapunov characteristic exponents from classical
molecular-dynamics simulations of molecular systems. The theoretical frame chosen to describe the orienta-
tional degrees of freedom is the quaternions scheme. We apply the method to small methane clusters. Two
different model potentials are used to investigate the role of internal molecular motion on the nonlinear
dynamics, and several parameters are calculated to study the thermodynamics and chaotic dynamics of these
clusters. Evidence is found for a solidlike to plasticlike phase transition occurring with the release of the
orientational degrees of freedom, at low temperatures below the melting point. The largest Lyapunov exponent
increases significantly during this transition, but it exhibits no particular variation during melting.
@S1063-651X~99!14108-4#

PACS number~s!: 05.45.Pq, 05.70.Fh, 36.40.2c
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I. INTRODUCTION

The relationship between the microscopic time dynam
of a complex system and its macroscopic behavior may
investigated in several ways. The standard tools of statis
physics, for instance in the field of liquids theory@1#, can be
efficiently used to predict various quantities experimenta
measurable at bulk level. With the increasing interest in n
linear physics, other fundamental questions have been
dressed more directly, such as the paradox of macrosc
irreversibility @2–4# established by Loschmidt in 1876. In
deed, one of the most intriguing features of many-bo
atomic systems, even bound by simple potentials such
Lennard-Jones~LJ!, is that they are chaotic. In other word
and despite the time reversibility of the equations of moti
the dynamics is unstable in the sense of Lyapunov: two
jectories which are initially close to each other in the pha
space exponentially diverge in time. Up to now, this fact h
been mainly supported by numerical experiments@5,6#, but
also more recently by analytical models@7#. However, since
complex atomic systems are far from being integrable, th
is no doubt that chaos is a widely spread phenomeno
these species.

Some useful parameters to quantify chaos are
Lyapunov characteristic exponents. They are defined as
exponential rates of local divergence or convergence of
jectories in the phase space. In the case of ‘‘simple’’ chao
systems with only few degrees of freedom~DOF!, the largest
Lyapunov exponentl has been seen to be generally a go
indicator of the possible crises@8#, even though not system
atically @9#. Several works have shown that, in the case
atomic systems, the largest Lyapunov exponentl could be
used as an indicator of a phase change. This seems to be
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at least for large systems near the thermodynamic li
@3,10#, but is not as simple for clusters having only a fe
DOF. In the case of realistic molecular systems, evide
from previous works@11–14# indicates that the internal ori
entational DOF play a part at least as important as that of
translational DOF in the short-time dynamics. In their stud
on water, Ohmine and co-workers@12,13# have developed
the instantaneous normal mode~INM ! approach of Buchner
et al. @14# to three-dimensional molecular systems. The ba
idea here is to look at the full anharmonicities exhibited
the forces and torques between molecules, in order to s
rate the respective contributions of all the collective mod
to the dynamics.

As molecular systems display a much greater diversity
phases than simple atomic systems, there is a real intere
studying dynamical parameters such as the Lyapunov ex
nents. From the thermodynamical point of view, the orien
tional DOF can be released before the translational DO
The corresponding ‘‘plastic’’ phase transition can even
seen at finite size@15#. In particular, it may be responsible, a
in the case of molecular nitrogen@11#, for the main increase
in the largest Lyapunov exponent, while only smooth var
tions are seen during the release of the translational D
that is, at melting. The Lyapunov exponents, in their fini
time local form, can also contribute to detect nonergodic
from the different probability distributions exhibited by di
ferent initial conditions@16#. This is important in simulation,
as common atomic or molecular systems often exhibit pr
lems of ‘‘broken ergodicity’’ or ‘‘nonergodicity,’’ even for
small clusters such as LJ7 @17#.

Recent advances in methodology have led in the p
years to the computation of Lyapunov characteristic ex
nents in hard-core@18# or molecular@11,19,20# systems. Di-
atomic molecular fluids have been investigated specific
@19,20# and, in a previous paper@11#, we have proposed a
method for estimating Lyapunov exponents in simulations
general molecular systems made of linear molecules. N
we extend this method to the case of three-dimensional m
ecules. We have chosen the quaternion frame of Evans@21#

la
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to describe the internal coordinates, as it is probably the m
robust and widely used scheme in numerical experiments
many rigid-body molecules. The next section recalls
main equations of motion, and presents the general met
In Sec. III we illustrate it with two examples of small meth
ane clusters with 3 and 13 molecules, respectively. Fina
we briefly summarize and conclude in Sec. IV.

II. METHODOLOGY

We consider a molecular system ofn molecules interact-
ing through a potential-energy functionV. Each moleculei
with mass mi contains ni atoms or pseudoatoms, and
treated as a rigid body. In the principal axes of inertia,
inertia tensorJi is diagonal with valuesJi

x , Ji
y , andJi

z . The
l
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translational motion is described with the center-of-mass

ordinate r i and the associated linear momentumpi5mi ṙ i .
The orientational motion is described with the quaternionqi

and the angular momentumpi in the space-fixed referenc
frame. The main practical interest of the quaternion coor
nates is that they remove the difficulties found when us
Euler angles (u,w,c), namely that divergences occur in th
rotational equations of motion when sinu→0 @22,23#. Physi-
cally, they can be seen as the generalization to thr
dimensional molecules of the orientation vectore for linear
molecules. A good discussion on this subject is given
Goldstein@22#. Knowing the quaternionqi5(q0 ,q1 ,q2 ,q3),
one can calculate the instantaneous rotation matrixQi lead-
ing from molecular-fixed to space-fixed coordinates@23#:
Qi~qi !5S q0
21q1

22q2
22q3

2 2~q1q21q0q3! 2~q1q32q0q2!

2~q1q22q0q3! q0
22q1

21q2
22q3

2 2~q2q31q0q1!

2~q1q31q0q2! 2~q2q32q0q1! q0
22q1

22q2
21q3

2
D . ~1!
n

ion

r
ons
o-
le-

ra-

d
e

Denoting byf i($r j ,qj%) and ti($r j ,qj%) the respective tota
force and torque felt by moleculei, one can write the instan
taneous equations of motion for both the translational
orientational part as@23#:

dr i

dt
5

1

mi
pi , ~2!

dpi

dt
5f i~$r j ,qj%!, ~3!

dpi

dt
5ti~$r j ,qj%!, ~4!

dqi

dt
5

1

2
M~qi !S 0

vi
bD . ~5!

In Eq. ~5!, M(qi) is the following 434 matrix:

M~qi !5S q0 2q1 2q2 2q3

q1 q0 2q3 q2

q2 q3 q0 2q1

q3 2q2 q1 q0

D ~6!

andvi
b is the body-fixed angular velocity vector in the pri

cipal molecular axes:vi
b5Ji

21Qi(qi)pi . At each time, these
equations ensure the conservation of the quaternion no
uqi u25q0

21q1
21q2

21q3
251. Numerically, they can be effi

ciently solved for a large variety of force types using acc
rate predictor-corrector algorithms@23#, or more simply
second-order Verlet-like algorithms@24#.

In order to calculate Lyapunov exponents from su
molecular-dynamics~MD! simulations, we write Eqs.~2!–
~5! in concise form as
d

m,

-

dc

dt
5F~c!, ~7!

wherec5$r i ,qi ,pi ,pi% is a 13n-vector andF a nonlinear
function. Suppose now thatc varies by an infinitesimal
amountdc(0) at timet50. The subsequent time evolutio
of dc leads to the largest Lyapunov exponentl1, provided
that a metrici i is defined on the phase space with dimens
13n:

l15 lim
t→`

lim
idc(0)i→0

1

t
ln

idc~ t !i
idc~0!i . ~8!

Differentiating Eqs.~2!–~5! is the natural way for obtaining
the dynamical equations governing the variations ofdc. It
can be easily seen that

ddc

dt
5

]F

]c
dc5S 0 0 A 0

0 B 0 C

D E 0 0

F G 0 0
D dc, ~9!

whereA, D, E, F, G are 3n33n matrices,B is a 4n34n
matrix, and C is a 4n33n matrix forming the Jacobian
]F/]c along with the null matrices0. All these matrices
explicitly depend on the instantaneous phase-space vectoc.
In practice, it is not necessary to develop the full expressi
for A, . . . ,G to compute the Lyapunov characteristic exp
nents, and we show in the Appendix how an efficient imp
mentation can be used in MD simulations.

As one follows a microcanonical molecular-dynamics t
jectory for the vectorc(t), the largest Lyapunov exponentl
is calculated with Eq.~9! by the usual method first describe
by Benettinet al. @25#. This method involves calculating th
variations of the vectordc(t), assuming an initial value«
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for idc(0)i , and recording periodically the lengthidc(t)i .
Due to the exponential divergence ofdc, one also needs to
rescale it. Other exponents can be estimated in the same
by following a set of orthogonal vectorsdck and recording
their lengthsidck(t)i regularly. To maintain orthogonality
and to prevent the collapse of all vectors in the most rap
growing direction, an orthonormalization procedure sho
be applied each time the lengths are calculated. Of cou
the choice of the initial vectorsdck(0), aswell as the check
during orthonormalization, must incorporate the quatern
normalizationduqi u250. Thus, the full spectrum of 13n ex-
ponents can be calculated from Eq.~9!. It is also possible to
compute the rotation numbersvk which quantify the average
angular velocity of the vectorsdck in phase space. Thes
parameters may be very useful in the study of dynam
systems, even if they have been only rarely considered u
now @4,19,26#. Another way of calculating thek largest
Lyapunov exponents is to introducek(k21)/2 Lagrange
multipliers on the right-hand side of Eq.~9! in order to con-
strain orthogonality of the set ofk vectors in phase spac
@27#. It seems, however, that periodic reorthonormalization
still required due to numerical errors.

III. APPLICATION TO SMALL METHANE CLUSTERS

Due to their small number of degrees of freedom, atom
clusters are ideal test cases for numerical experiments
chaos in realistic systems. In fact, many previous simulati
have focused on Lennard-Jones or Morse clusters@28# as
prototype chaotic Hamiltonian models. Berry, Wales, a
co-workers@29# have performed a detailed analysis of t
relationship between the local characteristics of the poten
energy surface~PES! and the Lyapunov instability in sma
clusters. Their main conclusion is that negative curvature
the PES is the principal source of chaos in these system
large systems and in the bulk, the fluctuations of posit
curvature seem to play an important part in the value of
Lyapunov exponents@30#. While the largest exponen
strongly increases at the onset of melting in periodic syste
@10#, the situation appears more complicated in atomic cl
ters. Depending on the potential chosen to model the in
action between atoms, the variations ofl with total energy
are very different@6,31#. In the case of nitrogen molecula
clusters@11#, the maximal Lyapunov exponent~MLE! can be
used as a probe of the phase change occurring with the
lease of the internal degrees of freedom, even at small s
In the case of LJ clusters@31#, there seems to be only a sma
increase in the MLE for clusters that are large enough~con-
taining at least 38 atoms!, but this increase is still continuou
due to dynamical coexistence.

To illustrate the method presented in the preceding s
tion, we have chosen to study the variations of the MLEl
with internal energyE in classical isoenergetic molecula
dynamics simulations of small (CH4)n clusters. The choice
of methane was made for several reasons. Contrary to o
molecular van der Waals clusters experimentally stud
such as (SF6)n @32#, methane clusters display very isotrop
intermolecular forces, leading to a high crystalline crosso
size @15# above which the structure is fcc. This similari
with simple atomic van der Waals clusters such as argo
ay,
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responsible for the existence of very different kinds of mo
potentials for methane.

These potentials can be divided into two major categor
the united-atom~UA! models and the all-atom~AA ! models.
While the former ones treat the whole CH4 molecule as a
single pseudoatom, thus allowing much extensive simu
tions, the AA models are more appropriate for simulations
condensed phases. Therefore, it is possible to investi
with these model potentials the direct influence of the int
nal degrees of freedom on the chaotic behavior of meth
clusters. Another motivation is to study the real microsco
dynamics and the statistical thermodynamics in detail,
contrast to most investigations on alkane clusters, wh
have been more concerned with large systems such as li
droplets@33#.

We have chosen a simple 12–6 Lennard-Jones UA mo
with parameters taken from Ref.@34#, «5148.1 K ands
53.73 Å , to represent the interaction between CH4 mol-
ecules. Among the various AA models, we have chosen
which gives satisfactory results on bulk simulations@35#,
namely the OPLS model@36#. This model uses 12–6 LJ
interactions between all atoms of different molecules, as w
as Coulombic interactions to model the octupole. The C4
molecule has a perfect tetrahedral geometry, with C–H d
tance being 1.09 Å . The LJ parameters are, respectiv
«

CC
533.2 K, «

HH
515.1 K, s

CC
53.50 Å , and s

HH

52.50 Å . The parameters«
CH

and s
CH

are found with the

usual Lorentz-Berthelot combination rules:«
CH

5A«
CC

«
HH

,

s
CH

5(s
CC

1s
HH

)/2. Finally, each carbon atom carries

charge of10.24e, and each hydrogen atom a charge o
20.06e.

The two cluster sizes studied, withn53 andn513 mol-
ecules, respectively, were first investigated statically. W
searched for the equilibrium geometries using the Mo
Carlo basin-hopping method of Wales and Doye@37#. The
translational and orientational displacements were perform
alternatively, with a probabilityp50.1 of performing a
translational move. This is similar, in a way, to the molecu
version of the basin-hopping algorithm developed recen
by Wales and Hodges@38#. Our result is an equilateral tri
angle for the centers of mass of the CH4 molecules in the
(CH4)3 cluster, and an icosahedron in the case of (CH4)13.
No particular order was found for the molecular orientatio

The calculation of the largest Lyapunov exponent requi
integrating Eq.~9! along a MD trajectory. This is done in
practice with a fourth-order Runge-Kutta scheme. For
main trajectory, such an algorithm is not necessary, and
leap-frog method of Fincham adapted to quaternions@24# is
used. This algorithm has a moderate numerical cost an
naturally incorporates the quaternion normalization. Dur
the simulations, we recorded several quantities of phys
interest, besides the MLE. First, as we have already done
linear molecules@11#, we evaluate a translational expone
l

T
by propagating a 6n-vectordc

T
(t) according to the fol-

lowing equation:

ddc
T

dt
5S 0 A

D 0D dc
T
, ~10!

where the 3n33n matricesA andD are those in Eq.~9!. Let
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us also emphasize thatl
T

is not a real Lyapunov exponent

as it is not strictly associated to a complete set of equat
of a dynamical system. However, all the important proper
of the Lyapunov exponents~Oseledec’s theorems! should
still be valid for l

T
. To check for the possibility of isomer

ization phenomena, we calculated the root mean squar
the bond length fluctuation, also known as the Lindema
parameterd. The orientational disorder in methane cluste
was analyzed using a generalization of the Vieillard-Ba
parameteru @23# to three-dimensional molecules:

u5
1

3 (
j ,k

^Q& jk, ~11!

where ^Q& jk is the (j ,k) component of the matrix̂Q& de-
fined from the molecular rotation matricesQi(t) as the av-
erage:

^Q&5 lim
T→`

1

TE0

T 1

n (
i 51

n

@Qi
†~ t !Qi~0!#dt ~12!

(Qi
† is the transpose ofQi). Obviously, and in order thatu be

significant, the simulations had to be performed with ze
angular momentum. As in the case of linear molecules,u has
the value 0 in a perfectly disordered phase and the value
a perfectly orientationally ordered state. An advantage of
definition ~11! for u is that it is independent of the molecula
geometry. Other molecular species such as SF6 can be fur-
ther investigated with other tools@39,40#, in particular pro-
jection methods such as the Pawley-Fuchs projection@41#.
To prevent evaporation or fragmentation, which are likely
occur at high energies, we also added a repulsive pote
wall: Vrep(r i)5k@r i2R#4/4, wherer i is the distance of the
molecular center of mass of moleculei with respect to the
cluster center of mass, andR is the radius of the wall.Vrep is
calculated only for distancesr i greater thanR. The numerical
parameters arek5104 K/Å 2, R57.5 Å for (CH4)3, and
R512.0 Å for (CH4)13. Finally, we calculated the thermo
dynamical characteristic functions using the distributions
potential energies accumulated along the MD trajector
and the multiple histogram method@42#. From simulations,
we thus computed the~canonical! internal energyU(T) and
heat capacityC(T)5]U/]T.

All simulations were carried out with a time step of 5
for a total length of 7.5 ns at each energy. The first 2.5
were retained to allow thermalization, and the calculation
all quantities~averages, Lyapunov exponent! was initiated.
Only the last 2.5 ns were kept for determining the avera
value of l, while the last 5 ns were kept ford, u, and the
histograms of potential energies.

We have represented in Fig. 1 the variations with inter
energyE of the translational (d) and orientational (u) order
parameters for the clusters (CH4)3 and (CH4)13. We have
also plotted the Lindemann index determined using the
model. The configurational heat capacities are plotted in
2 versus the canonical temperatureT for both the UA and
AA models. From the thermodynamical point of view, th
clusters undergo a phase change from solidlike to liquid
at approximately 40–50 K in the case of the AA model, a
in the vicinity of 30–40 K for the UA model. This phas
s
s
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n
s
n
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f
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s
f

e

l
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change appears as a wide peak in the heat capacities, bo
(CH4)3 and (CH4)13 in the UA and AA curves. The absolut
difference between the curves is not significant, as it sim
results from the larger number of DOF in the AA mode
Considering that their parameters were fitted to reprod
bulk properties, the agreement found between these
models is surprisingly good at such small sizes. The l
between the phase transitions seen in Fig. 1 and the the
behavior of Fig. 2 can be realized with the internal ener
U(T) plotted in Fig. 3 for both models and sizes. The m
crocanonical kinetic temperatureT(E), not plotted here, re-
mains monotonic whatever the model, and does not sh
any particular feature such as van der Waals loops chara
istic of dynamical coexistence@43#.

The melting transition is seen in the microcanonic
curvesd(E) as the sharp jump ofd. For the AA model, this
occurs at E;22 kj mol21 for (CH4)3, and E;
247 kj mol21 for (CH4)13. For the UA model, these value
are slightly different, and the rise ind occurs at E;
22.5 kj mol21 for (CH4)3 and E;240 kj mol21 for
(CH4)13. These values are seen in Fig. 3 to correspond p
cisely to the melting temperatures at which the heat cap
ties reach their maximum.

As is apparent from Fig. 1, methane clusters also unde
a transition from orientational order (u;1) to plasticlike

FIG. 1. Translational order parameter (d, squares! and orienta-
tional order parameter (u, circles! vs total energyE in molecular-
dynamics simulations of (CH4)n clusters. Values in the all-atom
model are represented by empty symbols; values in the united-a
model are represented by full symbols.E is in kJ mol21, d andu
have no unit.~a! n53; ~b! n513.
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(u;0) at low energy. This transition happens at a mu
lower energy for (CH4)3 than for (CH4)13, sinceu never
reaches values greater than 0.5 for the smaller cluster. F
Fig. 3, we interpret the first, narrow peak in the heat capa
~for the AA model! as the thermodynamical consequence
this transition. Similar observations were previously made
numerical experiments on other molecular clusters@44#. Of
course, the UA model cannot exhibit any evidence of th
rotational effects.

We now come to the maximal Lyapunov exponentl,
plotted in Fig. 4, as well as its translational restrictionl

T
for

both methane clusters using the two models. Strong simi
ties are indeed observed between the present curves in
AA model and the results for molecular nitrogen cluste
@11#. l sharply rises as soon as the orientational degree
freedom are released, while it shows no particular variat
when d jumps above 15%. The variations ofl for the UA
model andl

T
for the AA model are much softer. Onlyl, in

the case of (CH4)3 for the UA model, shows a clear signa
ture of melting with a drop nearE;22.5 kJ mol21. Con-
cerning (CH4)13, both l and l

T
continuously increase a

melting, even if their slopes decrease. Their behaviors at

FIG. 2. Configurational heat capacitiesC vs canonical tempera
ture T for the (CH4)n clusters, for the all-atom model~full lines!,
and for the united-atom model~dashed lines!, from molecular-
dynamics simulations and the histograms method.C is in units ofk

B

~Boltzmann’s constant!, T is in K. ~a! n53; ~b! n513.
h

m
ty
f
n

e

ri-
the
s
of
n

w

energy are also very similar, with a rather linear increase
above the binding energy.

It is quite interesting to note thatl
T

and l for the UA
model display rather similar behaviors. Of course, due to
much larger number of DOF in the AA model@29#, no de-
crease inl

T
could be reasonably expected for (CH4)3, while

l drops in the three-atom cluster. However, up to the melt
energy, the curves are nearly identical apart from a multi
cative constant. It thus appears that the orientational diso
induces an ‘‘averaging’’ effect on the instantaneous interm
lecular forces, similar to that in (N2)n clusters. This seems to
hold as long as the orientational dynamics occur on a m
faster time scale than the translational dynamics.

Contrary to the all-atom model, the UA model displa
very different behaviors of the largest Lyapunov expon
with total energy. The special case of the trimer has b
explained in detail by Wales and Berry@29#, who interpreted
the drop inl past isomerization as the result of an increas
harmonicity of the motion near the flat, linear saddle poi
No such effect is seen for LJ systems with four atoms
more, but only smooth, monotonic variations. Although th
subject is still controversial, it seems that a minimal size
about 40 atoms is required to induce a jump ofl at melting

FIG. 3. Internal energyU vs canonical temperatureT for the
(CH4)n clusters, for the all-atom model~full lines!, and for the
united-atom model~dashed lines!, from molecular-dynamics simu
lations and the histograms method.U is in kJ mol21, T is in K. ~a!
n53; ~b! n513.
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@31#. In finite systems, this jump is continuous due to d
namical coexistence@31#. A sharp, discontinuous increas
should nevertheless occur at bulk limit@10#. In the case of
molecular clusters described by all-atom models, no jump
l is seen at melting. This is not necessarily significant
small size, and a strong increase might appear in perio
systems. However, this surely demands further calculatio
for methane as well as for other molecules.

As we have seen, (CH4)n clusters share many propertie
with (N2)n clusters. Their thermodynamical behavior i
volves two phase changes, the first one at low temperat
from an orientationally ordered state to a plastic type ph
in which the molecular centers of mass remain in the sa
geometry while the internal degrees of freedom are relea
At higher energies or temperatures, the clusters underg
more traditional solidlike to liquidlike phase transition wi
the release of the translational order. Such phenomena
not general to all van der Waals molecular clusters. For
stance, (CO2)n @44# and (SF6)n @45# clusters do not display
the solidlike to plasticlike transition in such a distinct wa
Carbon dioxide clusters lose their orientational and tran
tional rigidities at the same temperature. On the contra
sulfur hexafluoride clusters have no~or a very small! orien-
tational rigidity.

FIG. 4. Largest Lyapunov exponentl ~squares! and transla-
tional exponentl

T
~circles! from molecular-dynamics simulation

of (CH4)n clusters. Values for the all-atom model are represen
by empty symbols; values for the united-atom model are rep
sented by full symbols.E is in kJ mol21, l andl

T
have no unit.~a!

n53; ~b! n513.
-

in
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ic
s,

es
e
e
d.
a

re
-

-
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As it may be the case for atomic clusters@31#, there is not
a direct relationship between the possible phase transit
and sudden changes in the largest Lyapunov exponenl.
Nevertheless, and even if the internal degrees of freedom
not necessarily play an important role in the thermal prop
ties of methane clusters once they have been released,
seem to be mainly responsible for the existence of cha
The nonlinear dynamics of these clusters is indeed very
pendent on the potential used to model molecular inter
tions. This confirms the results of Ohmine and co-work
@12# on the importance of molecular motion on the instan
neous dynamics, as well as recent results on diatomic
lecular systems@19,20#. Again, it suggests that one shou
look at other parameters carrying more information, such
the Kolmogorov entropy, the full Lyapunov spectrum, or t
rotation numbers, in order to determine the various contri
tions to instabilities of all the degrees of freedom.

IV. CONCLUSION

In this paper, we have developed a simple scheme
calculating the Lyapunov characteristic exponents in m
lecular systems. The method relies on the quaternion form
ism of Evans@21#, and is not restricted to three-dimension
molecules, even if one can also treat the special case of li
molecules using the method described in the previous pa
@11#. In our current approach, the Jacobian matrix betwe
the phase space and the tangent space does not need
explicitly calculated, and a first-order Taylor expansion
the derivatives~forces, torques, . . .! suffices to compute the
largest Lyapunov exponent. By considering a basis ok
,13n orthogonal vectorsdc i , thek largest Lyapunov expo-
nents can be estimated by following the time evolution
dc i and reorthonormalizing the set$dc i% regularly. The
whole Lyapunov spectrum, in particular, should show
12n zero exponents@46# due to the conservation of me
chanical quantities~14 zeros! and to the quaternion norma
ization (2n zeros!. The method can be employed along wi
any standard numerical integrator for the propagation of
molecular-dynamics trajectory. It requires the computat
of the Hessian matrix of the potential-energy function, a
can be applied either to finite or periodic systems. Extens
to constant-temperature molecular dynamics is also poss

We have illustrated this method by investigating the th
modynamics of small (CH4)n clusters with n53 and n
513 molecules. The influence of the molecular character
the nonlinear dynamics of these clusters was studied w
two model potentials: a united-atom potential which cons
ers all the molecules as pseudoatoms interacting through
potential, and an all-atom potential which treats separa
carbon and hydrogen atoms with LJ and Coulombic forc
We have shown that the solidlike to liquidlike phase chan
~near 40 K! follows a rigid to plastic transition occurring a
low temperature~near 5 K!. This phenomenon has a clea
thermal signature, and is responsible for the sharp rise in
largest Lyapunov exponent, at low energies, in the A
model. While the simple UA model cannot display such fe
tures, it is still able to reproduce the main trends of the m
ing process. As is the case for nitrogen clusters@11#, chaos in
these systems is primarily driven by the internal degrees
freedom, and the loss of translational order does not see
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induce significant variations in the exponentl.
The present results emphasize the strong influence o

rotational coordinates on the chaotic dynamics of finite-s
clusters. More generally, they also suggest the possible
of parameters such as the Lyapunov exponents of the
mogorov entropy to investigate phase transitions and crit
phenomena in complex molecular systems.
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APPENDIX: IMPLEMENTATION

Solving numerically Eqs.~2!–~5! and ~9! together re-
quires two different integrators. For the main trajectory go
erned by Eqs.~2!–~5!, we have chosen the simple leap-fro
method of Fincham@24#. This method provides the time evo
lution of the molecular coordinates$r i ,qi% at successive time
stepstk5kdt, as well as the time evolution of the momen
$pi ,pi% between tk21/2 and tk11/2. We assume that the
forces$f i% and torques$ti% are calculated at each time ste
tk . To compute the largest Lyapunov exponent with Eq.~9!,
one first needs to construct an initial 13n-vectordc(0), with
fixed length, such thatduqi u250 for all i. dc(t) is calculated
with, for instance, a Runge-Kutta procedure, by estimat
the derivatives in the following simple way.

First of all, Eq. ~2! is straightforwardly differentiated a
d ṙ i5dpi /mi . This leads to the explicit form of the matrixA,
namelyA5diag@1/m1,1/m1,1/m1 , . . . ,1/mn ,1/mn ,1/mn#.
tt
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From dc(tk), we know the variationsdr i anddqi for all
the molecules. Using Eq.~1!, the variations in the quater
nionsdqi lead to variations in the rotation matricesdQi , and
hence to variations in the atomic positions. If the molecu
interactions are described by site-site interactions, and isi

denotes the number of interaction sites of moleculei anddi
a ,

1<a<si the position of sitea in the space-fixed referenc
frame, the variation of the position in the molecule-fixe
frame can be written as

dr i
a5d@r i1Qi•di

a#5dr i1dQi•di
a . ~A1!

The variations of the forces and torquesdf i , dti at time tk
may then be calculated using the Hessian matrices of
potential-energy function. This provides the derivatives
the quantitiesdpi anddpi , thus, implicitly, the matricesD,
E, F, andG. It remains to estimate the derivatives ofdqi .
For this, we develop Eq.~5! linearly:

dq̇i5
1

2
M~qi !S 0

dvi
bD 1

1

2
dMS 0

vi
bD . ~A2!

dM is directly computed from the expression forM, Eq.
~6!, and dvi

b is easily calculated as a function ofdQi and
dpi as

dvi
b5Ji

21@dQi•pi1Qi•dpi # ~A3!

thus providing implicitly the matricesB andC of the Jaco-
bian. The use of a leap-frog algorithm for the main M
trajectory also implies a further evaluation, at each time s
tk , of the values of the angular momenta$pi% from their
values at tk21/2. In practice, this is already done in th
method of Fincham@24#.
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