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Largest Lyapunov exponent in molecular systems. Il: Quaternion coordinates and application
to methane clusters
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We present a numerical procedure for extracting Lyapunov characteristic exponents from classical
molecular-dynamics simulations of molecular systems. The theoretical frame chosen to describe the orienta-
tional degrees of freedom is the quaternions scheme. We apply the method to small methane clusters. Two
different model potentials are used to investigate the role of internal molecular motion on the nonlinear
dynamics, and several parameters are calculated to study the thermodynamics and chaotic dynamics of these
clusters. Evidence is found for a solidlike to plasticlike phase transition occurring with the release of the
orientational degrees of freedom, at low temperatures below the melting point. The largest Lyapunov exponent
increases significantly during this transition, but it exhibits no particular variation during melting.
[S1063-651%99)14108-4

PACS numbdis): 05.45.Pq, 05.70.Fh, 36.40c

I. INTRODUCTION at least for large systems near the thermodynamic limit
[3,10], but is not as simple for clusters having only a few

The relationship between the microscopic time dynamicOF. In the case of realistic molecular systems, evidence
of a complex system and its macroscopic behavior may b&om previous workg11-14 indicates that the internal ori-

investigated in several ways. The standard tools of statistic&ntational DOF play a part at least as important as that of the

physics, for instance in the field of liquids thedtyi, can be translational DQF in the short-time dynamics. In their studies
efficiently used to predict various quantities experimentallyon Water, Ohmine and co-workef$2,13 have developed
measurable at bulk level. With the increasing interest in nonthe instantaneous normal mod&iM) approach of Buchner

linear physics, other fundamental questions have been adt al.[14] to three-dimensional molecular systems. The basic

dressed more directly, such as the paradox of macroscopi ea here is to look at the full anharmonicities exhibited by

irreversibility [2—4] established by Loschmidt in 1876. In- the forces and torques between molecules, in order to sepa-

deed, one of the most intriguing features of many-bod)fate the respective contributions of all the collective modes
to the dynamics.

T ety e e o . 4 lecar yses sy  much grater diversiy o
: ;7 L C ' phases than simple atomic systems, there is a real interest in
and despltg thgz time rever5|blllty of the equations of mOt'Onstudying dynamical parameters such as the Lyapunov expo-
the dynamics is unstable in the sense of Lyapunov: tWo raqents. From the thermodynamical point of view, the orienta-
jectories which are initially close to each other in the phasgjonal DOF can be released before the translational DOF.
space exponentially diverge in time. Up to now, this fact hasrhe corresponding “plastic” phase transition can even be
been mainly supported by numerical experimd®$], but  seen at finite sizEL5]. In particular, it may be responsible, as
also more recently by analytical mod¢®s. However, since in the case of molecular nitrogéa1], for the main increase
complex atomic systems are far from being integrable, theréh the largest Lyapunov exponent, while only smooth varia-
is no doubt that chaos is a widely spread phenomenon itions are seen during the release of the translational DOF,
these species. that is, at melting. The Lyapunov exponents, in their finite-
Some useful parameters to quantify chaos are th@&me local form, can also contribute to detect nonergodicity
Lyapunov characteristic exponents. They are defined as thigom the different probability distributions exhibited by dif-
exponential rates of local divergence or convergence of traferent initial conditiong16]. This is important in simulation,
jectories in the phase space. In the case of “simple” chaotiGs common atomic or molecular systems often exhibit prob-
systems with only few degrees of freeddBOF), the largest lems of “broken ergodicity” or “nonergodicity,” even for
Lyapunov exponenk has been seen to be generally a goodsmall clusters such as £.J17].
indicator of the possible cris¢8], even though not system- Recent advances in methodology have led in the past
atically [9]. Several works have shown that, in the case ofyears to the computation of Lyapunov characteristic expo-
atomic systems, the largest Lyapunov exponertdould be  nents in hard-corgl8] or moleculaf11,19,2Q systems. Di-
used as an indicator of a phase change. This seems to be tragmic molecular fluids have been investigated specifically
[19,2Q and, in a previous papédl], we have proposed a
method for estimating Lyapunov exponents in simulations of
*Present address: Partement de Recherche Fondamentale sur lageneral molecular systems made of linear molecules. Now
Matiere Condense, CEA Grenoble, 17 rue des Martyrs, F38054 we extend this method to the case of three-dimensional mol-
Grenoble Cedex, France. Electronic address: fcalvo@cea.fr ecules. We have chosen the quaternion frame of Ef/2hls
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to describe the internal coordinates, as it is probably the mogtanslational motion is described with the center-of-mass co-

robust and widely used scheme in numerical experiments ofdinater; and the associated linear momentyns mir; .
many rigid-body molecules. The next section recalls therpe grientational motion is described with the quaterrgon

main equations of motion, and presents the general metho
In Sec. Il we illustrate it with two examples of small meth-
ane clusters with 3 and 13 molecules, respectively. Finall

we briefly summarize and conclude in Sec. IV.

Il. METHODOLOGY

We consider a molecular system mimolecules interact-
ing through a potential-energy functioh Each moleculé

nd the angular momentuss; in the space-fixed reference
frame. The main practical interest of the quaternion coordi-
Yhates is that they remove the difficulties found when using
Euler angles ¢, ¢,#), namely that divergences occur in the
rotational equations of motion when ir-0[22,23. Physi-
cally, they can be seen as the generalization to three-
dimensional molecules of the orientation vectoior linear
molecules. A good discussion on this subject is given by

with massm; containsn; atoms or pseudoatoms, and is Goldstein[22]. Knowing the quaternioq;=(qy,d1,92,93),
treated as a rigid body. In the principal axes of inertia, theone can calculate the instantaneous rotation m&yiead-

inertia tensow; is diagonal with values;, J¥, andJ;. The

95+95— 95— 03
2(0102—do03)
2(9103+dod2)

Qi(a)=

Denoting byfi({r;,q;}) and x({r;,q;}) the respective total
force and torque felt by moleculeone can write the instan-

ing from molecular-fixed to space-fixed coordinaf23]:

2(0102+0p03)  2(0103—0o02)
Uo—ai+0a3—a5  2(dx03+9ods) 1)
2(9295—God1) d3— 02— 03+0a3
[
dy
Gr=F, @)

taneous equations of motion for both the translational and

orientational part af23]:

dri 1
E:ﬁpi- 2
dp;
H:fi({r]!cﬁ})v ©)
dﬂ'i
W:Ti({rj’qj'}): 4
dg; 1 0
HIEM(QO o) 6)

In Eq. (5), M(q;) is the following 4x 4 matrix:

o —d1 —Qz2 —Q3
dr do —03 Q2
M(qy)= 6
(@) Q2 93 Qo —01 ©
s —0z2 o1 Yo

where ¢={r;,q; ,p; , 7} is a 1F-vector andF a nonlinear
function. Suppose now thap varies by an infinitesimal
amountsy(0) at timet=0. The subsequent time evolution
of 8¢ leads to the largest Lyapunov exponant provided
that a metrid| || is defined on the phase space with dimension
13n:

1 [ow)

t " s ®

N=lim lim
t—o [|5y(0)]|—0

Differentiating Eqs.(2)—(5) is the natural way for obtaining
the dynamical equations governing the variationssgf It
can be easily seen that

dsy  oF
at o’

(€)

0
B
E o,

m O o o
o o o >
o o (O o

G

whereA, D, E, F, G are X 3n matrices,B is a 4nX4n
matrix, andC is a 4hX3n matrix forming the Jacobian
dFldy along with the null matrice®. All these matrices

and e is the body-fixed angular velocity vector in the prin- explicitly depend on the instantaneous phase-space véctor
cipal molecular axescoiszlei(qi)m . At each time, these In practice, it is not necessary to develop the full expressions

equations ensure the conservation of the quaternion nornfior A,

...,G to compute the Lyapunov characteristic expo-

|gi|>=q2+q2+0g5+qg3=1. Numerically, they can be effi- nents, and we show in the Appendix how an efficient imple-
ciently solved for a large variety of force types using accu-mentation can be used in MD simulations.

rate predictor-corrector algorithmg23], or more simply
second-order Verlet-like algorithnig4].

As one follows a microcanonical molecular-dynamics tra-
jectory for the vecto)(t), the largest Lyapunov exponext

In order to calculate Lyapunov exponents from suchis calculated with Eq(9) by the usual method first described

molecular-dynamic§MD) simulations, we write Eqs(2)—
(5) in concise form as

by Benettinet al.[25]. This method involves calculating the
variations of the vectoby(t), assuming an initial value
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for | 54(0)||, and recording periodically the lengfiid(t)||.  responsible for the existence of very different kinds of model
Due to the exponential divergence &, one also needs to potentials for methane.

rescale it. Other exponents can be estimated in the same way, These potentials can be divided into two major categories:
by following a set of orthogonal vectow, and recording the united-atonfUA) models and the all-atoiAA ) models.
their lengths| 5y(t)|| regularly. To maintain orthogonality, While the former ones treat the whole Clholecule as a
and to prevent the collapse of all vectors in the most rapidiysingle pseudoatom, thus allowing much extensive simula-
growing direction, an orthonormalization procedure shouldions, the AA models are more appropriate for simulations in
be applied each time the lengths are calculated. Of cours€ondensed phases. Therefore, it is possible to investigate

the choice of the initial vectorsy, (0), aswell as the check with these model potentials the direct influence of the inter-

during orthonormalization, must incorporate the quaternior{'al degrees of freedqm on the chaotic behavior Qf metha_ne
R 5 clusters. Another motivation is to study the real microscopic
normalizations|q;|*=0. Thus, the full spectrum of 13ex-

ponents can be calculated from E8). It is also possible to dynamics and the statistical thermodynamics in detail, in

compute the rotation numbess, which quantify the average contrast to most investigations on alkane clusters, which
P ) Cak =N g 9€ have been more concerned with large systems such as liquid

angular velocity of the vectorgy, in phase space. These roplets[33]

parameters ma])C/ Ee Vhery useful inlthe s:udy of éjyn::;micafj We havelchosen a simple 12—-6 Lennard-Jones UA model

systems, even if they have been only rarely considered up to. _

now [4,19,26. Another way of calculating theék largest %th parameters taken from Reff34], £=148.1 K ando

Lyapunov exponents is to introdude(k—1)/2 Lagrange =3.73 A, torepresent the interaction between Chhol-
yapur poner . . grang ecules. Among the various AA models, we have chosen one
multipliers on the right-hand side of E¢P) in order to con-

strain orthogonality of the set df vectors in phase space which gives satisfactory results on bulk simulatiofb)

[27]. It seems, however, that periodic reorthonormalization isnamely_ the SPLS mt3|?d]36]. T?Ij.ﬁmOdel usles |12_6 o I

still required due to numerical errors interactions between all atoms of different molecules, as we
' as Coulombic interactions to model the octupole. The, CH

molecule has a perfect tetrahedral geometry, with C—H dis-

tance being 1.09 A . The LJ parameters are, respectively,
Ill. APPLICATION TO SMALL METHANE CLUSTERS 800233_2 K, g, =15.1 K, Ucc:3'50 A . and .,

Due to their small number of degrees of freedom, atomic=2.50 A . The parameters_, and o, are found with the
C:?Sterfs arel'id.eal test caslesf for numerical'experimelntfs fsual Lorentz-Berthelot combination rules; = \/e_s, ,
chaos in realistic systems. In fact, many previous simulations. _ . ;
have focused on Lennard-Jones or Morse clusi2g} as UCH_(UCC+ UHH)/Z' Finally, each carbon atom carries a
prototype chaotic Hamiltonian models. Berry, Wales, and°harge of+0.24e, and each hydrogen atom a charge of
co-workers[29] have performed a detailed analysis of the ~ 0-0€e. i ) _
relationship between the local characteristics of the potential- 1h€ two cluster sizes studied, with=3 andn=13 mol-
energy surfacéPES and the Lyapunov instability in small ecules, respectively, were first mvestl_gated.staucally. We
clusters. Their main conclusion is that negative curvature oéarched for the equilibrium geometries using the Monte
the PES is the principal source of chaos in these systems. fr@r0 basin-hopping method of Wales and D¢$&]. The
large systems and in the bulk, the fluctuations of positivéran3|at'°nal and orientational displacements were performed
curvature seem to play an important part in the value of thélternatively, with a probabilityp=0.1 of performing a
Lyapunov exponents30]. While the largest exponent translational move. This is similar, in a way, to the molecular
strongly increases at the onset of melting in periodic system¥ersion of the basin-hopping algorithm developed recently
[10], the situation appears more complicated in atomic clusPY Wales and Hodge38]. Our result is an equilateral tri-
ters. Depending on the potential chosen to model the inte@ngle for the centers of mass of the Chholecules in the
action between atoms, the variations)ofwith total energy ~ (CHa)s cluster, and an icosahedron in the case of {fs51
are very differen{6,31]. In the case of nitrogen molecular No particular order was found for the molecular orientations.
clusterg 11], the maximal Lyapunov expone(MLE) can be The qalculatlon of the largest Ly.apunov exponent requires
used as a probe of the phase change occurring with the réltegrating Eq.(9) along a MD trajectory. This is done in
lease of the internal degrees of freedom, even at small sizeBractice with a fourth-order Runge-Kutta scheme. For the
In the case of LJ clustef81], there seems to be only a small Main trajectory, such an algorithm is not necessary, and the
increase in the MLE for clusters that are large eno(gin-  !€ap-frog method of Fincham adapted to quaterni@# is
taining at least 38 atomisbut this increase is still continuous USed. This algorithm has a moderate numerical cost and it
due to dynamical coexistence. naturally incorporates the quaternion normalization. During

To illustrate the method presented in the preceding sed€ simulations, we recorded several quantities of physical
tion, we have chosen to study the variations of the MLE interest, besides the MLE. First, as we have already done for

with internal energyE in classical isoenergetic molecular- linear molecule411], we evaluate a translational exponent
dynamics simulations of small (G, clusters. The choice M; PY Propagating a B-vector 5¢.(t) according to the fol-
of methane was made for several reasons. Contrary to othé&wing equation:

molecular van der Waals clusters experimentally studied

such as (S, [32], methane clusters display very isotropic doy, (0 A
intermolecular forces, leading to a high crystalline crossover dt \D 0
size [15] above which the structure is fcc. This similarity

with simple atomic van der Waals clusters such as argon ishere the 8 <X 3n matricesA andD are those in Eq9). Let

) s, (10
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us also emphasize thﬁtT is not a real Lyapunov exponent, 041 s T T T T T 0.4
as it is not strictly associated to a complete set of equations L o oyl ]
of a dynamical system. However, all the important properties o3[ | (a) :-""F Jdos
of the Lyapunov exponent@Oseledec’s theoremsshould C ," n ]
still be valid for)\T. To check for the possibility of isomer- Y ;oA ]
ization phenomena, we calculated the root mean square c **[ | 1%% o
the bond length fluctuation, also known as the Lindemann C @ ]
parameters. The orientational disorder in methane clusters  ,, [ % Jo1
was analyzed using a generalization of the Vieillard-Baron r QQ 1
parameter [23] to three-dimensional molecules: § "qb 1
l 0 Baaﬂﬂq-;:e»@v,e__a.?ﬂ ,o»-a.e,.o-.@.,a,0,?..9»&.0..o»o-e-o--a-o |_ 0
o= — E <Q>jk, (11) -6 -4 -2 0
3 7% Energy (kJ mol™!
gy

where(Q)/ is the (j,k) component of the matrixQ) de- O
. . . L3 e o o ]
fined from the molecular rotation matric€x(t) as the av- o8l (b) w7 04
erage: . e ]

17710 06 Jo3

(Q)= lim ?f ~2 [QImQOIt 12 o < 1 <
Tow ! JONi=1 Eood ]

(Q;r is the transpose @;). Obviously, and in order that be 02 - m ] o1
significant, the simulations had to be performed with zero A Y — as® . 1°
angular momentum. As in the case of linear molecuddsas r ﬂnﬂ““’:a - .
the value 0 in a perfectly disordered phase and the value 1 it O | T%f0eed "5. I‘P AR AR
a perfectly orientationally ordered state. An advantage of the -0 —60 —50 —40 —30 —20
definition(11) for @ is that it is independent of the molecular Energy (kJ mol™1)
geometry. Other molecular species such ag &h be fur- . .
ther investigated with other too[89,40, in particular pro- FIG. 1. Translational order parametef, (squaresand orienta-

jection methods such as the Pawley-Fuchs projediii. tional order parameteré( circleg vs total energyE in molecular-

To prevent evaporation or fragmentation, which are likely todynamics simulations of (Cj, clusters. Values in the all-atom

occur at high energies, we also added a repulsive potentiQPOdel are represented by empty symbolls;. values in the united-atom
wall: Vrep(ri): K[ri—R]4/4, wherer, is the distance of the model are represented by full symbolsis in kJ mol'!, & and 6

molecular center of mass of moleculavith respect to the have no unit(@ n=3; (b) n=13.
cluster center of mass, amlis the radius of the walV ¢, is
calculated only for distances greater tharR. The numerical change appears as a wide peak in the heat capacities, both for
parameters are=10" K/A 2, R=7.5 A for (CH,)3, and (CH,); and (CH,)3in the UA and AA curves. The absolute
R=12.0 A for (CH,),5. Finally, we calculated the thermo- difference between the curves is not significant, as it simply
dynamical characteristic functions using the distributions ofresults from the larger number of DOF in the AA model.
potential energies accumulated along the MD trajectoriesConsidering that their parameters were fitted to reproduce
and the multiple histogram methdd2]. From simulations, bulk properties, the agreement found between these two
we thus computed thé&anonical internal energyJ(T) and  models is surprisingly good at such small sizes. The link
heat capacityC(T) =dU/JT. between the phase transitions seen in Fig. 1 and the thermal
All simulations were carried out with a time step of 5 fs behavior of Fig. 2 can be realized with the internal energy
for a total length of 7.5 ns at each energy. The first 2.5 ndJ(T) plotted in Fig. 3 for both models and sizes. The mi-
were retained to allow thermalization, and the calculation ofcrocanonical kinetic temperatufig E), not plotted here, re-
all quantities(averages, Lyapunov expongntas initiated. mains monotonic whatever the model, and does not show
Only the last 2.5 ns were kept for determining the averageny particular feature such as van der Waals loops character-
value of X, while the last 5 ns were kept faf, 4, and the istic of dynamical coexistendet3].
histograms of potential energies. The melting transition is seen in the microcanonical
We have represented in Fig. 1 the variations with internaturvess(E) as the sharp jump of. For the AA model, this
energyE of the translational §) and orientational §) order ~ occurs at E~—2 kjmol™* for (CH,); and E~
parameters for the clusters (¢H and (CH,),5. We have —47 kjmol ! for (CH,),3. For the UA model, these values
also plotted the Lindemann index determined using the Ufare slightly different, and the rise i® occurs atE~
model. The configurational heat capacities are plotted in Fig—2.5 kjmol"* for (CH,); and E~—40 kjmol ! for
2 versus the canonical temperatirdor both the UA and (CH,).3. These values are seen in Fig. 3 to correspond pre-
AA models. From the thermodynamical point of view, the cisely to the melting temperatures at which the heat capaci-
clusters undergo a phase change from solidlike to liquidlikeies reach their maximum.
at approximately 40-50 K in the case of the AA model, and As is apparent from Fig. 1, methane clusters also undergo
in the vicinity of 30—40 K for the UA model. This phase a transition from orientational orderg{-1) to plasticlike
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FIG. 3. Internal energyJ vs canonical temperatur€ for the
(CHy), clusters, for the all-atom modéfull lines), and for the
united-atom mode{dashed lines from molecular-dynamics simu-
lations and the histograms methddlis in kJ mol'?, Tis in K. (a)
n=3; (b) n=13.

FIG. 2. Configurational heat capaciti€svs canonical tempera-
ture T for the (CH,), clusters, for the all-atom modéfull lines),
and for the united-atom modedHbashed lines from molecular-
dynamics simulations and the histograms metl@i. in units oka
(Boltzmann’s constait T is in K. (&) n=3; (b) n=13.

. . energy are also very similar, with a rather linear increase just
(6~0) at low energy. This transition happens at a muchypave the binding energy.

lower energy for (CH); than for (CH);, since 6 never It is quite interesting to note that_and\ for the UA

reaches values greater than 0.5 for the smaller cluster. Fronn110de| display rather similar behaviors. Of course, due to the

Fig. 3, we interpret the first, narrow peak in the heat capacit){inuch larger number of DOF in the AA modE9], no de-

(for the AA mode) as the thermodynamical consequence of . .
this transition. Similar observations were previously made in'€ase I, could be reasonably expected for ()bl while

numerical experiments on other molecular clusfa@d. Of A drops in the three-atom cluster. However, up to the melting

course, the UA model cannot exhibit any evidence of thes€nergy, the curves are nearly identical apart from a multipli-

rotational effects. cative constant. It thus appears that the orientational disorder
We now come to the maximal Lyapunov exponent induces an “averaging” effect on the instantaneous intermo-

plotted in Fig. 4, as well as its translational restrictionfor  lecular forces, similar to that in (@), clusters. This seems to

both methane clusters using the two models. Strong similarihoId as long as the orientational dynamics occur on a much

ties are indeed observed between the present curves in tﬂ%ster time scale than the translational dynamics.

AA model and the results for molecular nitrogen clustersv rcogigggr:f;fe]ﬁa?/:tféog tr;:gdlglr’ teh; LLJ':‘ nll?]gsl S)I(S%lsgﬁt
[11]. N sharply rises as soon as the orientational degrees %?tg total enerav. The special cas% of tk):e ptrimer haps been
freedom are released, while it shows no particular variation gy- P

when § jumps above 15%. The variations kffor the UA explameql n deta|.l by W?'es. and Berfg9), who mterpreted_
. the drop in\ past isomerization as the result of an increasing
model and\ _ for the AA model are much softer. Only, in " . . :

T _ harmonicity of the motion near the flat, linear saddle point.
the case of (Cl; for the UA model, shows a clelar Signa- No such effect is seen for LJ systems with four atoms or
ture _of melting with a drop neaE~—_2.5 kJ m(_)f - Con- more, but only smooth, monotonic variations. Although this
cerning (CH)43, both A and A continuously increase at gypject is still controversial, it seems that a minimal size of
melting, even if their slopes decrease. Their behaviors at lovabout 40 atoms is required to induce a jump\ct melting
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As it may be the case for atomic clust¢dd], there is not
a direct relationship between the possible phase transitions
and sudden changes in the largest Lyapunov expokent
Nevertheless, and even if the internal degrees of freedom do
not necessarily play an important role in the thermal proper-
ties of methane clusters once they have been released, they
seem to be mainly responsible for the existence of chaos.
The nonlinear dynamics of these clusters is indeed very de-
pendent on the potential used to model molecular interac-
; o i tions. This confirms the results of Ohmine and co-workers
g rd ' (CH4)3 [12] on the importance of molecular motion on the instanta-
! neous dynamics, as well as recent results on diatomic mo-
- lecular system$19,20. Again, it suggests that one should
1 2 look at other parameters carrying more information, such as
Energy (kJ mol_l) the P_(olmogorov entropy, the full Lya_punov spectrum, or 'Fhe
————— rotation numbers, in order to determine the various contribu-
tions to instabilities of all the degrees of freedom.
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IV. CONCLUSION

In this paper, we have developed a simple scheme for
calculating the Lyapunov characteristic exponents in mo-
lecular systems. The method relies on the quaternion formal-
ism of Evang21], and is not restricted to three-dimensional
molecules, even if one can also treat the special case of linear
molecules using the method described in the previous paper
[11]. In our current approach, the Jacobian matrix between
the phase space and the tangent space does not need to be
T S e T S T explicitly calculated, and a first-order Taylor expansion of

Energy (k J mol_l) the derivativegforces, torques..) suffices to compute the

largest Lyapunov exponent. By considering a basiskof

FIG. 4. Largest Lyapunov exponent (squares and transla- <130 orthogonal vectorsy; , thek largest Lyapunov expo-
tional exponent _ (circles from molecular-dynamics simulations NeNts can be estimated by following the time evolution of
of (CH,), clusters. Values for the all-atom model are represented®?i and reorthonormalizing the sdvy;} regularly. The
by empty symbols; values for the united-atom model are reprewhole Lyapunov spectrum, in particular, should show 14
sented by full symbol<E is in k mol'*, X and\ _have no unit(a) ~ +2n zero exponent$46] due to the conservation of me-
n=3: (b) n=13. chanical quantitie$14 zerog and to the quaternion normal-

o o ) . ization (2n zerog. The method can be employed along with
[31]. In finite systems, this jump is continuous due to dy-any standard numerical integrator for the propagation of the
namical coexistenc¢31]. A sharp, discontinuous increase molecular-dynamics trajectory. It requires the computation
should nevertheless occur at bulk liniit0]. In the case of ot the Hessian matrix of the potential-energy function, and
molecular clusters described by all-atom models, no jump i e applied either to finite or periodic systems. Extension
A is seen at melting. This is not necessarily significant aj, c,nstant-temperature molecular dynamics is also possible.
22?2;';%3\;2\/;S:L?QQSL:?;rezz?ngxgztfﬁgﬁgfgé?cﬁgggﬂg We have illustrated this method by investigating the ther-
y : ' Y rhodynamics of small (Ckj, clusters withn=3 andn

for methane as well as for other molecules. =13 molecules. The influence of the molecular character on
As we have seen, (Ghi, clusters share many properties . ‘ . ; )
the nonlinear dynamics of these clusters was studied with

with (N,), clusters. Their thermodynamical behavior in- del ials: ited ial which id
volves two phase changes, the first one at low temperaturd¥/© Model potentials: a united-atom potential which consid-

from an orientationally ordered state to a plastic type phas€'S all the molecules as pseudoatoms interacting through a LJ
in which the molecular centers of mass remain in the sam@otential, and an all-atom potential which treats separately
geometry while the internal degrees of freedom are release§arbon and hydrogen atoms with LJ and Coulombic forces.
At higher energies or temperatures, the clusters undergo We have shown that the solidlike to liquidlike phase change
more traditional solidlike to liquidlike phase transition with (near 40 K follows a rigid to plastic transition occurring at
the release of the translational order. Such phenomena al@w temperaturenear 5 K. This phenomenon has a clear
not general to all van der Waals molecular clusters. For inthermal signature, and is responsible for the sharp rise in the
stance, (CQ), [44] and (Sk), [45] clusters do not display largest Lyapunov exponent, at low energies, in the AA
the solidlike to plasticlike transition in such a distinct way. model. While the simple UA model cannot display such fea-
Carbon dioxide clusters lose their orientational and translatures, it is still able to reproduce the main trends of the melt-
tional rigidities at the same temperature. On the contrarying process. As is the case for nitrogen clusféd, chaos in
sulfur hexafluoride clusters have Gor a very small orien-  these systems is primarily driven by the internal degrees of
tational rigidity. freedom, and the loss of translational order does not seem to
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induce significant variations in the exponent From 8¢(ty), we know the variationsr; and &q; for all
The present results emphasize the strong influence of thilae molecules. Using Ed1), the variations in the quater-
rotational coordinates on the chaotic dynamics of finite-sizenions 8q; lead to variations in the rotation matricé®; , and
clusters. More generally, they also suggest the possible roleence to variations in the atomic positions. If the molecular
of parameters such as the Lyapunov exponents of the Kointeractions are described by site-site interactions, argl if
mogorov entropy to investigate phase transitions and criticadienotes the number of interaction sites of molec¢aedd
phenomena in complex molecular systems. 1<as<s; the position of sitew in the space-fixed reference
frame, the variation of the position in the molecule-fixed
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NESR. potential-energy function. This provides the derivatives of
the quantitiessp; and &47;, thus, implicitly, the matrice®,

E, F, andG. It remains to estimate the derivatives & .
For this, we develop Eq5) linearly:

ori'=o[ri+Q;-d]=ori+6Q;-di*. (AD)

APPENDIX: IMPLEMENTATION

Solving numerically Egs(2)—(5) and (9) together re-
quires two different integrators. For the main trajectory gov-
erned by Eqs(2)—(5), we have chosen the simple leap-frog
method of Finchani24]. This method provides the time evo-
lution of the molecular coordinat€s; ,q;} at successive time
stepst,=két, as well as the time evolution of the momenta
{pi ,ﬂi} betweentk,]_/z and tk+1/2- We assume that the
forces{f;} and torqueq s} are calculated at each time step
tx. To compute the largest Lyapunov exponent with &,
one first needs to construct an initialrt8ector 5¢(0), with
fixed length, such thaf|q;|*=0 for alli. 5y(t) is calculated  thus providing implicitly the matrice8 and C of the Jaco-
with, for instance, a Runge-Kutta procedure, by estimatintian. The use of a leap-frog algorithm for the main MD
the derivatives in the following simple way. trajectory also implies a further evaluation, at each time step

_ First of all, EQ(Z) is Straightforwardly differentiated as tk, of the values of the angu|ar momer{ta-i} from their
ori=6p;/m; . This leads to the explicit form of the matrdx, = values att,_,,,. In practice, this is already done in the
namelyA=diag[1/m,,1/m;,1/m,, ..., 1/m,,1/m,,1/m,]. method of Finchanj24].

0

o (A2)

1 0
+§6M wib .

1
6qi=§M<qi>( 5
oM is directly computed from the expression far, Eqg.
(6), and 5wib is easily calculated as a function 6f); and
om; as

SP=J [ 6Q; m+ Q- 6m] (A3)
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